
PUBLICATIONS


Selected publications
 P. Rozycki, J. Kolbusz, A. Malinowski, B.M. Wilamowski, "Effective Training of RBF Networks ", HSI’19, 2527.06.2019 , Richmond, USA, pp. 2227.
 P. Rozycki, J. Kolbusz, A. Malinowski, B.M. Wilamowski, "The Impact of Architecture on the Deep Neural Networks Training ", HSI’19, 2527.06.2019 , Richmond, USA, pp. 4146.
 J. Kolbusz, P. Rozycki, O. Lysenko, B. M. Wilamowski, "Error Back Propagation Algorithm with Adaptive Learning Rate ", IDT’19, 2527.06.2019 , Zilina, Slovakia, pp. 212218.
 X. Wu, P. Rozycki, J. Kolbusz, B. M. Wilamowski, "Constructive Cascade Learning Algorithm for Fully Connected Networks ", ICAISC’19, 1620.06.2019 , Zakopane, pp. 236247.
 P. Rozycki, J. Kolbusz, G. Krzos, B.M. Wilamowski, "Approximationbased Estimation of Learning Rate for Error Back Propagation Algorithm ", 23rd IEEE International Conference on Intelligent Engineering Systems (INES’19) , 2527.04.2019, Godollo, Hungary, pp. 6570.
 P.Rozycki, J. Kolbusz, G. Krzos, B.M. Wilamowski, "Implementation of Deep Neural Networks for Industry Applications ", IECON 2018, pp. 27172722.
 J. Kolbusz, P. Rozycki, O. Lysenko, B. M. Wilamowski, "Neural Networks Saturation Reduction ", Artificial Intelligence and Soft Computing, ICAISC 2018. Lecture Notes in Artificial Intelligence, (LNAI, volume 10841), pp. 108117.
 P. Rozycki, J. Kolbusz, O. Lysenko, B.M. Wilamowski, "Soft Patterns Reduction for RBF network performance improvement ", Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Artificial Intelligence, (LNAI, volume 10841), pp. 190200.
 X.Meng, P. Rozycki, J.F. Qiao, B.M. Wilamowski, "Nonlinear System Modeling using RBF networks for industrial application", IEEE Transactions on Industrial Informatics, August 2017, Eearly Access
 A. Olejczak, J. Korniak, B.M. Wilamowski, "Discrete Cosine Transformation as Alternative to Other Methods of Computational Intelligence for Function Approximation", Artificial Intelligence and Soft Computing. ICAISC 2017. Lecture Notes in Computer Science (LNCS, volume 10245), pp.143153
 P. Rozycki , J. Kolbusz, O. Lysenko, B. M. Wilamowski, "Improvement of RBF Training by Removing of Selected Pattern", Artificial Intelligence and Soft Computing. ICAISC 2017. Lecture Notes in Computer Science (LNCS, volume 10245), pp.154164
 J. Kolbusz, P. Rozycki, B. M. Wilamowski, "The study of architecture MLP with linear neurons in order to eliminate the ”vanishing gradient” problem", Artificial Intelligence and Soft Computing. ICAISC 2017. Lecture Notes in Computer Science (LNCS, volume 10245), pp.97106
 Bo Wu, Bogdan M. Wilamowski, "A Fast Density and Grid Based Clustering Method for Data with Arbitrary Shapes and Noise", IEEE Transactions on Industrial Informatics, Volume: 13, Issue: 4, pp. 1620 – 1628, 2017
 J. Richardson, J. Korniak, P. Reiner, B. M. Wilamowski, "Nearest Neighbor Spline Approximation (NNSA) Improvement to TSK Fuzzy Systems", IEEE Trans. on Industrial Informatics Volume: 12, Issue: 1, pp.169  178, 2016
 Zhan Su, Janusz Kolbusz, B. M. Wilamowski, "Linearization of Bipolar Amplifiers Based on Neural Network Training Algorithm", IEEE Trans. on Industrial Electronics Volume: 63, Issue: 6, pp.3737  3744, June 2016
 X. Wu, P. Rozycki, B.M. Wilamowski, "Single Layer Feedforward Networks Construction Based on Orthogonal Least Square and Particle Swarm Optimization", Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture Notes in Computer Science, vol. 9692, 2016, pp.158169
 P. Rozycki, J. Kolbusz, R. Korostenskyi, B. M. Wilamowski, "Estimation of Deep Neural Networks Capabilities Using Polynomial Approach", Artificial Intelligence and Soft Computing. ICAISC 2016. Lecture Notes in Computer Science, vol. 9692, 2016, pp.136147
 M. Pukish, P. Rozycki, B. Wilamowski, "PolyNet  A PolynomialBased Learning Machine for Universal Approximation", IEEE Transactions on Industrial Informatics, 2015, Volume: 11, Issue: 3, pp. 708  716 (IF=8.785)
 C. Cecati, J. Kolbusz, P. Siano, P. Rozycki, B. Wilamowski, "A novel RBF Training Algorithm for Shortterm Electric Load Forecasting: Comparative Studies", IEEE Transactions on Industrial Electronics, 2015, Volume: 62, Issue: 10, pp. 6519  6529 (IF=6.498)
 X. Wu, P. Rozycki, B. Wilamowski, "Hybride Constructive Algorithm for Single – Layer Feeforward Network Learning", IEEE Transactions on Neural Networks and Learning Systems, 2015, Volume:26, Issue: 8, pp. 16591668 (IF=4.291)
 G. Deshpande, P. Wang, D. Rangaprakash, B. M. Wilamowski, "Fully Connected Cascade Artificial Neural Network Architecture for Attention Deficit Hyperactivity Disorder Classification from Functional Magnetic Resonance Imaging Data", IEEE Trans. on Man System and Cybernetics, vol 45, No 12, December 2015, pp. 26682679
 P. Rozycki, J. Kolbusz and B.M. Wilamowski, "Dedicated Deep Neural Network Architectures and Methods for Their Training", INES 2015, IEEE 19th International Conference on Intelligent Engineering Systems , September 3–5, 2015, Bratislava, Slovakia, pp. 7378.
 B. M. Wilamowski, J. Korniak, "Learning architectures with enhanced capabilities and easier training", INES 2015, IEEE 19th International Conference on Intelligent Engineering Systems , September 3–5, 2015, Bratislava, Slovakia, pp. 2129.
 J. Kolbusz, P. Rozycki, T. Bartczak, Bogdan M. Wilamowski, "Using ParityN Problems as a Way to Compare Abilities of Shallow, Very Shallow and Very Deep Architectures", ICAISC’15 14th Int. Conference "Artificial Intelligence and Soft Computing" , Zakopane, Poland, June 1418, 2015, pp. 112122
 H. Yu, P. D. Reiner, T. Xie, T. Bartczak, B. M. Wilamowski, "An Incremental Design of Radial Basis Function Networks", IEEE Trans. Neural Netw. Learning Syst. 25(10): 17931803 (2014)
 T. Xie, H. Yu, J. Hewlett, P. Rozycki, B. Wilamowski, "Fast and Efficient SecondOrder Method for Training Radial Basis Function Networks", IEEE Trans. on Neural Networks and Learning Systems, vol. 23, no. 4, pp. 609  619 , Apr 2012.
 P. Siano, C. Cecati, H. Yu, J. Kolbusz, "Real Time Operation of Smart Grids via FCN Networks and Optimal Power Flow", IEEE Transaction on Industrial Informatics, vol. 8, no. 4, 2012, pp. 944 – 952
 D. Hunter, Hao Yu, M. S. Pukish, J. Kolbusz, B.M. Wilamowski, "Selection of Proper Neural Network Sizes and Architectures—A Comparative Study", IEEE Trans. on Industrial Informatics, vol. 8, May 2012, pp. 228240.
 B. M. Wilamowski, Hao Yu, and Kun Tao Chung "ParityN Problems as a Vehicle to Compare Efficiency of Neural Network Architectures", Industrial Electronics Handbook, vol. 5 – Intelligent Systems, 2nd Edition, chapter 10, pp. 101 to 108, CRC Press 2011.
 B. M. Wilamowski, H. Yu, "Improved Computation for Levenberg Marquardt Training", IEEE Trans. on Neural Networks, vol. 21, no. 6, pp. 930937, June 2010.
 B. M. Wilamowski, H. Yu, "Neural Network Learning Without Backpropagation", IEEE Trans. on Neural Networks, vol. 21, no.11, pp17931803, Nov. 2010.
 B. M. Wilamowski, "Neural Network Architectures and Learning algorithms" IEEE Industrial Electronics Magazine, vol 3, no 4, pp.5663, (2009) (best paper award).
 B. M. Wilamowski, N. J. Cotton, O. Kaynak, and G. Dundar, "Computing Gradient Vector and Jacobian Matrix in Arbitrarily Connected Neural Networks", IEEE Trans. on Industrial Electronics, vol. 55, no. 10, pp. 37843790, Oct 2008.
 B. M. Wilamowski, D. Hunter, and A. Malinowski, "Solving parityN problems with feedforward neural networks", Proc. 2003 IEEE IJCNN, 25462551, IEEE Press, 2003.
 B. M. Wilamowski and R. C. Jaeger, " Implementation of RBF Networks by Feedforward Sigmoidal Neural Networks," Intelligent Engineering Systems Through Artificial Neural Networks vol. 7, ed. C. H. Dagli and others, New York 1997, pp. 183188
 B. M. Wilamowski and L. Torvik, " Modification of Gradient Computation in the BackPropagation Algorithm", presented at ANNIE'93  Artificial Neural Networks in Engineering, St. Louis, Missouri, Nov.1417, 1993, pp. 175180,


